[张贴报告]Which aerosol type dominate the impact of aerosols on ozone via changing photolysis rates?

Which aerosol type dominate the impact of aerosols on ozone via changing photolysis rates?
编号:119 稿件编号:615 访问权限:仅限参会人 更新:2024-04-09 15:44:14 浏览:44次 张贴报告

报告开始:2024年05月18日 08:05 (Asia/Shanghai)

报告时间:1min

所在会议:[SP] 张贴报告专场 » [sp13] 主题13、气溶胶与大气环境

暂无文件

摘要
The impact of aerosols on ozone via influencing photolysis rates is a combined effect of absorbing aerosols (AA) and scattering aerosols (SA). However, AA and SA show different optical properties and influence photolysis rates differently, which then cause different impacts on ozone. Till now, the dominate factor is disconfirmed, which is largely due to the impact of SA on ozone not reaching to a consistent conclusion. In this study, the WRF-Chem model was implemented to simulate the air pollutants over the North China Plain (NCP). The impacts of AA and SA on ozone via influencing photolysis rates were quantitatively isolated and analyzed. Our results also demonstrated the decreasing effect of AA on ozone within planet boundary layer (PBL) which is consistent with the conclusions of previous studies. But for SA, it decreased the ozone chemical contribution (CHEM) near surface but increased which in the upper layers of PBL, that enlarge the ozone vertical gradients. In this case, more vertical exchanges of ozone would occur with the effect of vertical mixing motion of atmosphere, then the opposite CHEM variations were counteracted with each other and finally led to very slight changes in ozone within PBL. Thus, it can be summarized that AA dominate this impact of aerosols on ozone. Reducing AA could cause a general increase in ozone (ΔO3) over the NCP. Based on the aerosol levels of this case, ΔO3 would be seen over 86% of the areas in the NCP when reducing AA by 3/4 and ΔO3 was more significant in the megacities. Our study highlights the different relationships between ozone and aerosol types, which suggests that more attentions should be paid on aerosol types, especially AA, when making the synergetic control strategy of aerosols and ozone in China.
关键字
ozone,aerosol,WRF-Chem
报告人
高晋徽
副教授 成都信息工程大学

稿件作者
高晋徽 成都信息工程大学
发表评论
验证码 看不清楚,更换一张
全部评论
● 会务总协调  

● 学术安排

 

辜克兢

13950003604

gukejing@xmu.edu.cn

辜克兢

13950003604

gukejing@xmu.edu.cn

柳    欣

13806024185

liuxin1983@xmu.edu.cn

窦    恒

18627754021

douheng@chytey.com

孙佳妮

15201086188

scarlett@chytey.com

刘    琳

13313708075

lliu@iue.ac.cn

 

● 会场技术服务

 

李    虎

柳    欣

18965842343

13806024185

hli@iue.ac.cn

liuxin1983@xmu.edu.cn
李招英

13860473552

lizhaoying@xmu.edu.cn

     
           
● 会场安排   ● 会议注册  

辜克兢

13950003604

gukejing@xmu.edu.cn

胡勤梅 13554192326

mary@chytey.com

窦    恒

18627754021

douheng@chytey.com

孙晓笛 18813296455 xiaodi.sun@xmu.edu.cn
           
● 商业赞助   ● 会议财务  
朱    佳 13950159036

zhujia@xmu.edu.cn

许心雅 18005960255 xuxinya@xmu.edu.cn
           

海报张贴

 

● 酒店预定及咨询

 
张    君 13860426122 junzhang@xmu.edu.cn

李    璟

18627754146

lijing@chytey.com

卢    巍 18971567453 luwei@chytey.com      

 

登录 注册缴费 酒店预订